Scientists review latest progress in wearable energy harvesting & storage

24 March 2022

Scientists review latest progress in wearable energy harvesting & storage_infographic
Scientists review latest progress in wearable energy harvesting & storage_infographic

In a recent paper published in peer-reviewed scientific journal, Advanced Functional Materials, an international research team, including Pusan National University scientists, summarises the use of nanomaterials in energy harvesting & storage devices for self-sustainable wearable electronics.

Wearable electronic devices are becoming increasingly smaller and more complex. As a result, it has become challenging to provide them with sufficient energy. In a recent review, Pusan National University scientists take stock of the latest developments in energy harvesting and storage technology for wearable devices, with a focus on nanomaterials and their assembly into various macroscale structures. Their work aims to accelerate the design of wearable technology and shape their future demands.

Wearable electronic devices have evolved a lot in recent years, unlocking novel applications in healthcare, fitness monitoring, data collection, communication and more. However, the natural progression towards smaller, lighter, more complex and multifunctional wearables has also made it more challenging to provide these devices with suitable energy sources. Fortunately, research is being conducted on different methods to meet the energy demands of next-generation wearable devices.

In particular, nanoscale materials, if assembled into appropriate macroscale structures, can not only provide the flexibility that wearables need, but also harvest and store the necessary energy for operation through various mechanisms. In a recent paper published in peer-reviewed scientific journal, Advanced Functional Materials, an international research team reviewed the latest progress in energy harvesting and energy storage for wearable devices using structured nanomaterials. The team included Assistant Professor Ha Beom Lee of South Korea's Pusan National University, Professor Seung Hwan Ko of Seoul National University and Dr Hyun Kim of Korea Research Institute of Chemical Technology in Korea.

There are many different ways to harvest energy in wearable devices and convert it to electricity. Some of the most promising mechanisms include: biomechanical energy harvesters, which gather energy from the natural motions of the human body; biothermal energy harvesters, which produce electricity from body heat; and wearable solar cells. The article also delves into energy storage technologies, such as wearable batteries and supercapacitors, and hybrid devices, which combine multiple forms of energy harvesting and/or storage in a single package.

In particular, the review focuses on how different types of nanomaterials can be used in 1D, 2D and 3D structures and configurations for energy harvesting and storage, outlining the main advantages and limitations of each. “Our comprehensive overview on nanomaterials and their properties, advanced processes, optimised structural design and integration strategies for energy devices will contribute to the practical deployment of power systems that can be used in wearables in the near future,” remarks Dr Lee.

Overall, this work should help shape the future demand for self-sustainable wearable devices, which will include smartphones, watches, glasses, tattoos, textiles, e-skin sensors and healthcare devices. Dr Lee concludes by highlighting important research directions to accelerate the development of wearable technology: “Further studies should focus on refining nanoscale materials, structures and interfaces, develop appropriate macroscale device configurations tailored for specific applications, and propose integration strategies to synergistically combine multiple energy harvesting and storage units to achieve reliable operation.

The review article should help researchers stay updated and inspire new ideas, speeding up the development of wearable electronics and, eventually, their integration into our daily lives.


Title of original paper: Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures
Journal: Advanced Functional Materials
DOI: https://doi.org/10.1002/adfm.202110535


About Pusan National University
Pusan National University, located in Busan, South Korea, was founded in 1946, and is now the no. 1 national university of South Korea in research and educational competency. https://www.pusan.ac.kr/eng/Main.do

About the authors
Dr. Hyun Kim is a senior researcher at the Advanced Materials Division of the Korea Research Institute of Chemical Technology.

Prof. Ha Beom Lee is an Assistant Professor of the School of Mechanical Engineering at Pusan National University, Korea.

Prof. Seung Hwan Ko is a Professor at the Applied Nano & Thermal Science (ANTS) Lab, Mechanical Engineering Department of Seoul National University, Korea. Before joining Seoul National University, he was a faculty member at KAIST.


Contact Details and Archive...

Print this page | E-mail this page