The role of nanomaterials in electronics manufacturing

Author : Sanna Arpiainen | Deputy Division Leader | 2D Experimental Pilot Line (2D-EPL) The Graphene Flagship

01 November 2021

The Graphene Flagship_2D Experimental Pilot Line (2D-EPL)
The Graphene Flagship_2D Experimental Pilot Line (2D-EPL)

The late 20th to early 21st century is known as the silicon age – and the impact of silicon on the electronics industry is almost too large to quantify. But, silicon electronics are now close to their physical limits in terms of efficiency & performance. Research initiative, the Graphene Flagship is working on the solution: nanomaterials like graphene & graphene related materials (GRMs).

This article was originally featured in the November 2021 issue of EPDT magazine [read the digital issue]. And sign up to receive your own copy each month.

Here, Sanna Arpiainen, Deputy Division Leader for the 2D Experimental Pilot Line (2D-EPL) – a new plant to pioneer manufacturing of prototype graphene-based electronics – explains how layered materials will unveil a new generation of electronics, promising new functionalities and applications...

Wonder material graphene is a single carbon atom thick, and can therefore be classed as a nanomaterial — a material with at least one external dimension measuring less than 100nm. Despite a small size, nanomaterials promise a whole world of potential for the future of electronics, creating faster, smaller and more powerful devices.

It’s thanks to their physical properties that nanomaterials like graphene hold such promise for the electronics industry. Using their unique characteristics, nanomaterials can result in smaller, more lightweight electronics, that use fewer resources to build and improve the accuracy of circuit construction down to an atomic level. Nanomaterials have the potential to stretch the boundaries of what we currently think electronics should do or be.

But the properties of each nanomaterial differ; so what about graphene, specifically?

Wafer production is already ongoing in 2D-EPL partner, imec’s cleanroom [image credit: imec]
Wafer production is already ongoing in 2D-EPL partner, imec’s cleanroom [image credit: imec]

Hot properties

Graphene is the strongest known material, harder than diamond and lighter than aluminium. Most importantly for electronics applications though, graphene is incredible conductive —13 times more so than copper. It is also mechanically flexible, chemically stable and disperses heat.

Electronics applications include detectors, modulators, imagers, sensors and transceivers — all of which have been investigated by the research institutions and partner companies within the Graphene Flagship.

Graphene can also be used for photonic and optical electronic devices. Graphene absorbs a broad range of optical wavelengths — from ultraviolet to the far infrared — enabling ultra-broadband communications way beyond the capabilities of 5G. Plus, when used in optical devices, graphene transforms almost all the light it receives into electric signals. This characteristic results in devices that consume less power and work more efficiently.

Graphene will also play a role in the rise of wearable, flexible electronics. The nanomaterial’s extreme thinness, strength and elasticity make it ideal for this kind of device.

The Graphene Flagship Flexible Electronics Work Package, a research and innovation group within the Flagship’s roster of projects, is currently working on conductive textiles, stretchable electronics for smart patches and electronics for paper-based, disposable smart products — like smart packaging — all using graphene and other layered materials.

Integrating graphene & related materials into silicon wafers could revolutionise the electronics industry [image credit: imec]
Integrating graphene & related materials into silicon wafers could revolutionise the electronics industry [image credit: imec]

Graphene on the market

So, electronics using nanomaterials, including graphene, sound great in theory, but when will they reach the market? The Graphene Flagship aims to bring graphene out of academic laboratories, through mainstream product design, manufacturing and production, and into society within 10 years. To this end, it has already developed numerous successful technologies — over 90 products and 15 spin-off companies emerging since the Flagship’s inception in 2013, and each year these numbers grow.

However, to reach the market, many electronics applications rely on the wafer scale integration of graphene on a commercial level. In the next 5 years, products that don’t rely on wafer scale integration, such as flexible sensors and smart packaging, are expected to appear on the market. For those that do, pilot production is expected in 2025 in the earliest. The 2D Experimental Pilot Line (EPL) has been created to speed up this process.

A foundry for the future

At the start of 2021, the European Commission launched the 2D-EPL, a new €20 million collaborative project to pioneer the fabrication of new electronics, photonic devices and sensors that integrate graphene and layered materials. The 2D-EPL is a graphene foundry, or factory, that offers comprehensive prototyping services to companies, research centres and academics, so they can develop and test their innovative technologies based on 2D materials.

The ultimate goal of the 2D-EPL is to industrialize the production of innovative graphene and layered material-based devices that are integrated with traditional semiconductors. In addition to providing the low and medium volume processing services to advance the component production and integration, the 2D-EPL develops automated high-volume tools and tailored process chemicals, compatible with semiconductor industry standards. It will be the first graphene foundry in the world to do so. The 2D-EPL will keep Europe at the forefront of technological innovation, while helping to create the next generation of electronics and semiconductors.


Though silicon has shaped the 21st century electronics industry — and, in fact, wider society too — so far, combining it with graphene and other layered or nanomaterials will push the capabilities of electronic devices much further. A lack of infrastructure has made integrating layered materials with silicon on a large scale a challenge. But, thanks to the 2D-EPL this will change, helping to commercialise graphene and layered material-based electronic technologies.

About the Graphene Flagship:

Focused on research, innovation and collaboration, and funded by the European Commission, the Graphene Flagship aims to secure a major role for Europe in the ongoing technological revolution, helping to bring graphene innovation out of the lab and into commercial applications. The Graphene Flagship gathers nearly 170 academic and industrial partners from 21 countries, all exploring different aspects of graphene and related materials. Bringing diverse competencies together, the Graphene Flagship facilitates cooperation between its partners, accelerating the timeline for industry acceptance of graphene technologies. The European Commission’s FET (Future & Emerging Technologies) Flagships enable research projects on an unprecedented scale. With €1 billion budgets, the Graphene Flagship, Human Brain Project and Quantum Flagship serve as technology accelerators, helping Europe to compete with other global markets in research and innovation.

Keep up with the latest from the Flagship at:

More information...

Contact Details and Archive...

Print this page | E-mail this page

This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.