Scientists develop new method revolutionising graphene printed electronics

18 December 2018

Graphene printed electronics

Researchers based at The University of Manchester have developed a new low cost method for producing graphene printed electronics, significantly speeding up and reducing the cost of conductive graphene inks.

Printed electronic circuits offer a breakthrough in the penetration of technology into everyday life, further promoting the spread of Internet of Things (IoT) applications.

The development of printed conductive inks for electronic applications is growing rapidly, widening applications in transistors, sensors, antennas, RFID tags and wearable electronics.

Current conductive inks tend to use metal nanoparticles for their high electrical conductivity. However, these materials can be expensive or easily oxidised, making them far from ideal for low cost IoT applications.

Published in Nature Communications, the team found that using a material called dihydrolevogucosenone (known as Cyrene) is not only non-toxic, environmentally-friendly and sustainable, but can also provide higher concentrations and conductivity of graphene ink.

Professor Zhiurn Hu said: “This work demonstrates that printed graphene technology can be low cost, sustainable and environmentally friendly for ubiquitous wireless connectivity in the IoT era, as well as providing RF energy harvesting for low power electronics.”

Professor Sir Kostya Novoselov said: “Graphene is swiftly moving from research to the application domain. Development of production methods relevant to the end-user in terms of their flexibility, cost and compatibility with existing technologies are extremely important. This work will ensure that implementation of graphene into day-to-day products and technologies will be even faster.”

Kewen Pan, the lead author on the paper said: “This is a significant step towards commercialisation of printed graphene technology. I believe it would be an evolution in the printed electronics industry because the material is so low cost, stable and environmental friendly”.

The National Physical Laboratory (NPL), who were involved in measurements for this work, have partnered with the National Graphene Institute (NGI) at The University of Manchester to provide a materials characterisation service to provide the missing link for the industrialisation of graphene and 2D materials. They have also published a joint NPL and NGI good practice guide, which aims to tackle the ambiguity surrounding how to measure graphene’s characteristics.

Professor Ling Hao said: “Materials characterisation is crucial to be able to ensure performance reproducibility and scale up for commercial applications of graphene and 2D materials. The results of this collaboration between the University and NPL is mutually beneficial, as well as providing measurement training for PhD students in a metrology institute environment.”

Graphene has the potential to create the next generation of electronics, currently limited to science fiction: faster transistors, semiconductors, bendable phones and flexible wearable electronics.

Advanced materials is one of The University of Manchester’s research beacons – examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet.


Contact Details and Archive...

Print this page | E-mail this page