'Extremely brilliant' modernisation project for European x-ray research facility

06 December 2018

Credit: Shutterstock

A 20-month shutdown has commenced to dismantle the ESRF's storage ring that has for 30 years served the international scientific community with reliable x-rays – to make way for a revolutionary x-ray source: the Extremely Brilliant Source.

The Extremely Brilliant Source (EBS) is the world’s first high-energy fourth-generation synchrotron light source, which will be made available to users in 2020.

Said Francesco Sette, director general of the European Synchrotron Radiation Facility (ESRF): “Today, the EBS project is officially entering a new stage, which is the fruit of our hard work of the last four years.

“Our imagination, engineering design, quality control and assembly, guided by strict project management, have made it possible to start the swap in our tunnel between the old and the new storage ring. This is possible thanks to the great capability of ESRF staff.”

Thirty years ago, the ESRF in Grenoble, France, made history as the world’s first third-generation synchrotron light source, producing x-rays that are 100 billion times brighter than the x-rays used in hospital radiographic equipment – ultimately providing unrivalled opportunities for scientists in the exploration of materials and living matter.

For 30 years, the ESRF has broken records for its scientific output (including four Nobel prize laureates), as well as for the brilliance and stability of its x-ray beams. Today, with EBS, the ESRF continues to lead the way. EBS is a €150m project, funded by the 22 partner countries of the ESRF.

With EBS, the ESRF is building an ambitious new standard for synchrotron storage rings – namely the world’s first high-energy fourth-generation storage rings – with unique x-ray performances increased by a factor 100, when compared to both current storage ring and third-generation standards.

The first high-energy fourth-generation synchrotron

The European Synchrotron Radiation Facility | Credit: Flickr

Said Pantaleo Raimondi, EBS project leader and director of the Accelerator & Source Division: “With EBS, our quest for higher brilliance and coherence continues. The expertise that we have at the ESRF is unique and allows us to attempt a project of this scale. Today all the ESRF teams are mobilised to make this vision a reality in 2020.”

EBS represents an enormous challenge, not only in pushing science and technology to its known limits, but also on a human and logistical scale. Over the next 20 months, the ESRF will put in stand-by mode their scientific user programme, dismantle the current 844m-circumference storage ring and install the new EBS lattice within the existing infrastructure.

The new source will be achieved by replacing the existing storage ring, a double-bend achromat (DBA) magnet sequence, with an innovative and award-winning hybrid multi-bend achromat (HMBA) design, developed at the ESRF.

Teams will have eight months to install 128 girders, supporting over 10,000 components precision-aligned to within half the width of a human hair, in the tunnel.

EBS relies on a number of key innovative technologies. This first-of-a-kind new storage ring combines two major facets: an increase in the number of bending magnets with seven (as opposed to two) bending magnets per cell, and optics that maximise the stable phase space volume available for the electron beam, reducing the horizontal emittance.

The result of the above is a tighter packing of electrons, increasing the brightness and degree of coherence of the x-rays by two orders of magnitude. This gives the EBS beams laser-like properties that approach those of x-ray free-electron lasers (XFELs) (such as the European XFEL), and it also makes EBS the first high-energy fourth-generation synchrotron light source.

EBS is also using permanent magnet technology for the 128 dipole magnets, achieving a significant reduction in electricity consumption. In the new EBS storage ring, 1 000 innovative magnets – nearly twice as many as in the previous storage ring – will be squeezed into the same space inside the accelerator tunnel.

To pioneer synchrotron science

Continued Francesco Sette: “Audacity and innovation underpin the history of the ESRF. With the construction of a brand-new storage ring, together with the most advanced portfolio of new beamlines, EBS will enable scientists to bring x-ray science into research domains and applications that could not have been imagined a few years ago.”

The new EBS storage ring will be complemented by the construction of the following: four brand-new flagship beamlines and the full refurbishment of existing beamlines; an ambitious instrumentation programme with a focus on high-performance detectors; and cutting-edge experimental control and data analysis tools – all designed to exploit the enhanced performance of the new source.

The new EBS beamlines will make it possible to probe complex materials at the atomic level in greater detail, with higher quality, and much faster. These new beamlines will help scientists to address major challenges facing our society, including the development of the next generation of drugs, biomaterials and sustainable materials, and to provide deep insights into the complex mechanisms that govern living organisms.

The beamlines will also help elucidate our recent and ancient past, as manifested in historical artefacts and fossils. Furthermore, they will provide unique opportunities for applied and innovation-driven research.

EBS will be a powerful new instrument for the international scientific community, opening the door to new experiments in x-ray science. By pushing the frontiers of accelerator technology, the EBS lattice has inspired other major light sources around the world. As EBS state, they are reinforcing what has always been, and will always be, the ESRF’s mission: to pioneer synchrotron science.


Contact Details and Archive...

Print this page | E-mail this page